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We investigate a pattern-forming system close to a Hopf bifurcation with broken translational symmetry. In
one-dimensional geometries, its evolution is governed by two coupled complex Ginzburg-Landau equations
which describe the amplitude of the counterpropagating traveling waves that develop beyond the instability.
The convective and absolute instabilities of the possible steady states are analyzed. In the regime of strong
cross coupling, where traveling waves are favored by the dynamics, the results of previous analysis are
recovered. In the weak cross-coupling regime, where standing waves are favored by the dynamics, traveling
waves nevertheless appear, in the absence of noise, between the uniform steady state and the standing-wave
patterns. In this regime, standing waves are sustained by spatially distributed external noise for all values of the
bifurcation parameter beyond the Hopf bifurcation. Hence, the noise is not only able to sustain spatiotemporal
patterns, but also to modify pattern selection processes in regimes of convective instability. In this weak
coupling regime we also give a quantitative statistical characterization of the transition between deterministic
and noise-sustained standing waves when varying the bifurcation parameter. We show that this transition
occurs at a noise-shifted point and it is identified by an apparent divergence of a correlation time and the
saturation of a correlation length to a value given by the system size.@S1063-651X~96!10412-8#

PACS number~s!: 47.20.Ky, 02.50.Ey, 05.40,1j, 43.50.1y

I. INTRODUCTION

A series of physicochemical systems driven out of equi-
librium undergo Hopf bifurcations with broken translational
symmetries, which lead to the development of traveling or
standing wave patterns. This is, for example, the case in
Rayleigh-Bénard convection in binary or viscoelastic fluids
@1#, for spiral vortex flow in the Taylor-Couette system with
counterrotating cylinders@2#, or in electrohydrodynamic con-
vection in liquid crystals@3#. Traveling rolls may also be
obtained by the application of a through flow on hydrody-
namic instabilities of the Rayleigh-Be´nard or Taylor-Couette
type @4–6#. As a result of the generic behavior of these sys-
tems in the vicinity of Hopf bifurcations, they may be de-
scribed by coupled complex Ginzburg-Landau equations
~CCGLE!.

Effectively, it is now well known that, close to an insta-
bility, the spatiotemporal behavior of a system far from ther-
mal equilibrium can be described by order-parameter-like
equations@7–9#. The mathematical structure of these equa-
tions is rather universal and independent of the underlying
physical system. The derivation of the order parameter equa-
tion from the basic evolution equations is made possible by
the space-time separation between unstable and stable
modes, and can be performed by different methods, such as
adiabatic elimination of the stable, or ‘‘slaved’’ modes@8#,
or multiple scale analysis@9#, for example.

In one-dimensional systems which undergo a Hopf bifur-
cation with broken spatial inversion symmetry, the order pa-

rameter fields(x,t) can be represented by two slowly vary-
ing envelope functionsA(x,t) andB(x,t) for left and right
traveling waves:

s~x,t !5A~x,t !ei ~kcx1vct !1B~x,t !e2 i ~kcx2vct !. ~1.1!

The evolution of the amplitudeA and B is governed by
CCGLE @7,10–14#. The nonlinear cross coupling between
both amplitudes that determines if the stable patterns corre-
spond to traveling~strong cross coupling! or standing~weak
cross coupling! waves. The effect of the group velocity may
usually not be discarded in the determination of the stability
domain of the wave patterns. One has to distinguish between
convective and absloute instability, and it is now well known
that, sufficiently close to the Hopf bifurcation, the unpat-
terned state is convectively unstable but absolutely stable
@5,13–17#. In this regime, localized perturbations are con-
vected with the mean flow in such a way that they grow only
in a moving reference frame but decay at any fixed location.
On increasing the bifurcation parameter, one reaches a well
defined threshold determined by the group velocity, and
above which the reference state becomes absolutely unstable.
In this regime, perturbations grow locally at fixed locations.
As a result, the behavior of the system is qualitatively very
different in both regimes. In the convectively unstable re-
gime, a deterministic system cannot develop the expected
wave patterns, except in special geometries, while in a sto-
chastic system, noise is spatially amplified and gives rise to
noise-sustained structures@15#. On the contrary, in the abso-
lutely unstable regime, waves are intrinsically sustained by
the deterministic dynamics.

Convectively unstable systems have been widely studied,
both numerically and experimentally, but mostly in the case1*URL: http://formentor.uib.es/Nonlinear/
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of single traveling waves. This situation is modeled by a
single CGLE which emerges in the strong cross-coupling
regime. In this case Deissler@15# obtained numerically noise
sustained structures in the convectively unstable regime.
Babcocket al. @5# and Tsamaretet al. @6# analyzed in detail
the corresponding experimental situation in the case of a
Taylor-Couette system with through flow. Both groups ob-
served the transition from convective to absolute instability
and were able to generate noise-sustained structures. They
also showed that structures sustained by dynamics or by
noise have different statistical properties. This is, in particu-
lar, reflected by the behavior of their power spectrum which
is essentially noise-free in the absolutely unstable regime and
presents broadening in the convectively unstable regime.
This broadening results from the phase wandering induced
by noise amplification. The onset of spectral broadening cor-
responds to the absolute instability boundary, which may be
slightly shifted, according to the noise intensity. As shown
by Babcocket al. @5# the experimental results fit nicely with
the numerical analysis of the corresponding amplitude equa-
tion which is of the complex Ginzburg-Landau type.

The problem of interacting noise-sustained counterpropa-
gating waves was first studied by Deissler and Brand@13#.
However, the lack of a detailed stability analysis of indi-
vidual traveling waves did not allow a complete analysis of
the problem. In particular, the distinction these authors make
for positive and negative cross couplings between left and
right traveling waves does not determine the stability of a
traveling wave solution. Nevertheless, they presented quali-
tatively new results consisting in the possibility of obtaining
transitions from convective to absolute instability and vice
versa for a given set of parameters. Such transitions can eas-
ily be interpreted in the framework of the stability analysis of
the uniform and traveling waves states.

It is the aim of this paper to study the effect of spatially
distributed noise on convectively unstable systems, either for
weak and strong cross couplings between counterpropagat-
ing waves, in the presence of group velocity. In Sec. II we
introduce the CCGLE and study the linear stability of the
uniform reference state and homogeneous traveling wave.
We find five different regions with different stability proper-
ties in our parameter space. In particular we find that for
weak cross coupling there is an intermediate regime between
the uniform steady state and the standing wave patterns
where traveling waves are convectively unstable. In Sec. III
we present our stochastic numerical analysis in the five re-
gions previously identified. We show that, in the weak cross-
coupling regime, noise sustained standing waves appear for
all values of the bifurcation parameter beyond the Hopf bi-
furcation. Finally, Sec. IV reports a statistical characteriza-
tion of the transition between deterministic and noise-
sustained standing waves in terms of the behavior of an
average amplitude, correlation time, and correlation length.
An appendix contains details of our numerical procedures.

II. COUPLED COMPLEX GINZBURG-LANDAU
EQUATIONS. STABILITY ANALYSIS

OF HOMOGENEOUS STATES

We consider the CCGLE which describe the dynamics of
the amplitudes of two counterpropagating traveling waves

with spatial variations in one direction:

] tA~x,t !2v]xA~x,t !

5mA~x,t !1~11 ia!]x
2A~x,t !

2~11 ib!uA~x,t !u2A~x,t !2~g1 id!uB~x,t !u2A~x,t !

1A«jA~x,t !;

] tB~x,t !1v]xB~x,t !

5mB~x,t !1~11 ia!]x
2B~x,t !

2~11 ib!uB~x,t !u2B~x,t !2~g1 id!uA~x,t !u2B~x,t !

1A«jB~x,t !, ~2.1!

whereA(x,t) andB(x,t) are the complex amplitudes of the
right and left traveling waves. The control parameterm mea-
sures the distance to the onset of the instability,v is the
group velocity. The coefficientsa, b, g, and d can be
determined from the basic equations of the underlying physi-
cal system. A Gaussian, delta correlated, complex white
noise of strength level denoted by«, j j (x,t), j5A,B is as-
sumed to be present in the system. This noise can be spa-
tially distributed or localized~for example, at the inlet of a
Taylor-Couette system with through flow!. We will consider
in this paper a spatially distributed noise with vanishing cor-
relation length~white noise in space and time!.

Next we analyze, from a deterministic point of view
~«50! the linear stability of homogeneous solutions of Eqs.
~2.1!.

A. Stability of the uniform reference state

Linearizing the equations~2.1! around the trivial solution
A(x,t) 5 B(x,t) 5 0, the complex dispersion relationv for
a disturbance of wave numberK, that thus behaves as
evt1Kx, becomes:

v5m1Kv1~11 ia!K2, K5k1 iq, ~2.2!

and the growth rate of such a perturbation is given by
Rev(K). Using the method of steepest descent, the long-
time behavior of the system along a ray defined by fixed
x/t, i.e. in a frame moving with a velocityv05x/t, is gov-
erned by the saddle point defined by:

ReS dv

dKD5v0 , ImS dv

dKD . ~2.3!

Since absolute instability occurs when perturbations grow at
fixed locations, one has to consider the growth rate of modes
evolving with zero group velocity, which are defined by:

ReS dv

dKD5ImS dv

dKD50. ~2.4!

These conditions define the following wave number:
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q52ak,

k52
v

2~11a2!
. ~2.5!

The real part ofv, which determines the growth ratel of
these modes is then:

l5Re~v!5m2
v2

4~11a2!
. ~2.6!

Therefore, the uniform reference state is absolutely un-
stable ifl.0. As already shown in@15#, this condition de-
termines a critical line in the parameter space which can be
expressed for the group velocityv or the control parameterm
as

vc52Am~11a2! or mc5
v2

4~11a2!
. ~2.7!

Hence, for 0,m,mc , the uniform reference state is convec-
tively unstable, and wave patterns are convected away in the
absence of noise. Form.mc , wave patterns may grow and
are sustained by the dynamics, even in the absence of noise
@15#.

B. Stability of the uniform traveling wave

The CGLE ~2.1! admits two families of solutions corre-
sponding to traveling waves,A5Am2k2expi@kx2(bm
1ak2)t#, B(x,t)50, and B5Am2k2expi@kx2(bm1ak2)t#,
A(x,t)50. For the sake of simplicity, we first consider uni-
form solutions (k50!. Without loss of generality, one may
study the first family, and, in order to analyze its linear sta-
bility, one has to look for solutions in the form
A5(Am1a)exp2ibmt, B(x,t)5b, and compute the eigen-
values of the linearized evolution equations fora, b, and
their complex conjugate. The real parts of the eigenvalues of
the Fourier transform ofa are well known~see, for example,
@7# and @18#! and read:

Rev uau522m2~12ab!q21••• ,

Revf52~11ab!q22
a2~11b2!

2m
q41••• . ~2.8!

The first one, associated with amplitude, is always nega-
tive, but the second one, associated with phase, may become
positive and the system may experience a Benjamin-Feir in-
stability when 11ab is negative@19,20#. In the following,
we will consider systems wherea andb are small and posi-
tive, such that 11ab.0.

The only remaining instability mechanism may then result
from the growth ofB. Effectively, the linearized evolution
equations forb give the following growth rate:

vB5m~12g!2Kv1~11 ia!K2. ~2.9!

Hence, in the absence of group velocity, single traveling
waves are always stable forg.1, while they are unstable for
g,1 leading to standing wave solutions withuAu5uBuÞ0.
The conditiong51 thus separates the strong cross-coupling

regime~g.1! from the weak cross-coupling regime~g,1!.
Note that the pointg50 does not play any particular role in
the stability of traveling waves.

In the presence of a nonvanishing group velocity, travel-
ing waves remain stable forg.1, while for g,1, they are
convectively unstable form,mc8, wheremc8 is determined
similarly to the preceeding case. Effectively, the conditions

ReS dvB

dK D5ImS dvB

dK D50 ~2.10!

define the same wave number

q52ak,

k52
v

2~11a2!
. ~2.11!

However, the real part ofvB , which determines the growth
rate of the corresponding modes, is now:

lB5Re~vB!5m~12g!2
v2

4~11a2!
~2.12!

and

mc85
v2

4~12g!~11a2!
,mc . ~2.13!

The corresponding critical group velocity isvc8
5vcA12g or

gc512
v2

4m~11a2!
. ~2.14!

As a result, on increasing the bifurcation parameter in deter-
ministic systems at fixedv and withg,1, traveling waves
should be expected between the trivial uniform state and
standing waves, as shown on the phase diagram displayed in
Fig. 1.

The above deterministic linear stability analysis divides,
for v fixed, them-g parameter space in five regions of dif-
ferent spatiotemporal behavior which we label as follows~cf.
Fig. 1!:

1: m,mc O

2: mc,m TWJ g.1,

3: m,mc O

4: mc,m,
mc

12g
TW

5:
mc

12g
,m SW

6 g,1.

~2.15!

In the strong cross-coupling regime~g.1! we distinguish
two regions. In region 1 the uniform reference state~O! is
convectively unstable and it becomes absolute unstable in
region 2 where a traveling wave~TW! is absolutely stable. In
the weak cross-coupling regime~g,1! we find three regions.
In region 3 the uniform reference state~O! is convectively
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unstable, while in region 4 the traveling wave is the convec-
tively unstable solution. This latter solution becomes abso-
lutely unstable in region 5 where the standing wave~SW!
solution is absolutely stable, since we are considering values
of a, b, andd sufficiently small to satisfy the standing waves
phase stability condition 11a(b2gd)/(12g2) @10,21#.

These results can easily be generalized to traveling waves
solutions with nonzero wave numbers (kÞ0). In this case,
a perturbations decay if the Benjamin-Feir-Eckhaus criterion
11ab2(2k2/m2k2).0 is satisfied, whileb perturbations
grow locally whenm(12g)1gk22v2/4(11a2) is positive.

We finally note that the absolute instability criteria de-
rived in this section are a direct consequence of the criterion
derived in Sec. II A and Ref.@15#, where the linear growth
rate of the 0 state,m, is replaced by its effective linear
growth ratem2guAu2. This replacement was noted in@13#
and it can be interpreted~depending on the sign ofg! as a
stabilizing or destabilizing effect of the waveA on the wave
B. However, as shown above, the sign ofg does not deter-
mine stability boundaries of the traveling wave solution
A5Am2k2expi@kx2(bm1ak2)t#, B(x,t)50.

III. NOISE-SUSTAINED STRUCTURES

In this section we analyze numerically the effect of spa-
tially distributed noise on the homogeneous solutions of the
CCGLE ~2.1!. We will explore the parameter space by vary-
ing the cross-coupling parameterg and the reduced distance
to thresholdm while keeping the group velocityv set to 1.
We note that this is equivalent to the variation ofg and v
with m fixed, thanks to the scaling

A5m1/2A8, B5m1/2B8, T5m21t,

X5m21/2x→v85
v

Am
. ~3.1!

In addition we will fix the noise level to«50.0001 and we
assign fixed values to the other parameters of~2.1!: a50.02,
b50.04, andd50.05. These values belong to the domain of
parameters in which the CGLE does not show phase insta-
bilities of the homogenous solutions leading to chaotic be-
havior.

Noise is expected to be amplified by the convective
terms leading to noise-sustained structures in regions
where the reference state is deterministically convectively
unstable. Therefore, we anticipate that noise effects will
result in TW states in the strong coupling regime~regions
1 and 2 of Fig. 1!, being noise sustained in region 1. Like-
wise we anticipate finding SW states in regions 3, 4, and 5
of Fig. 1 corresponding to weak cross coupling. This implies
that noise transforms aO state into a noise-sustained SW
in region 3 and a TW state into a noise-sustained SW in
region 4.

In order to check these predictions the stochastic CCGLE
~2.1! have been solved numerically with a Heun method~cf.
Appendix!, random initial conditions around theA5B50
solution, and the following boundary conditions: at the up-
stream end of each amplitude we use a rigid boundary con-
dition

A~L,t !50, B~0,t !50. ~3.2!

It turned out to be unimportant for the downstream part of
the system whether the inlet is fixed or is fluctuating with the
noise level@5#. We also checked boundary conditions with a
subcritical part~m,0! in front of the inlet (x,0, x.L).
This influenced only a very small portion of the system near
x50 andx5L. Different boundary conditions on the out-
stream end have also a very small influence on the bulk of
the system@5,22#. We furthermore used a vanishing deriva-
tive at the outstream end of each amplitude:

FIG. 1. Stability diagram for ho-
mogeneous solutions of Eqs.~2.1!.
The numbers 1–5 denote regions of
different spatiotemporal behavior, as
discussed in the text. o stands for the
deterministic case~«50!, x stands for
the stochastic case~«Þ0!. Parameter
values area50.02,b50.04,d50.05,
andv51.
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]xA~0,t !50, ]xB~L,t !50. ~3.3!

These boundary conditions mimic extended systems with no
reflection of the individual traveling waves at the ends of the
system. As such, they rule out the possibility of standing
waves maintained by end effects, as it occurs for example in
binary fluid convection, even in the absence of noise@23#. In
this case, even in the convectively unstable regime, counter-
propagating waves, emitted at the boundaries are not entirely
convected out of the system since they are partially reflected
at each opposite boundary and may thus build an effective
but artificial standing wave pattern in the bulk. With the
boundary condition used here this effect is absent and no
boundary effect should thus interfere with the stochastic ef-
fects that we analyze.

A. Strong cross-coupling,g>1

Due to the fact that the real part of the cross coupling
parameter~g.1! between the two fields is larger than the
real part of the self coupling (11 ib), traveling waves
should be the selected pattern in this domain. Due to the
symmetry betweenA and B, a competition between these
two traveling waves may be observed.

In region 1, where the group velocity is larger than the
critical one (m,mc or vc,v) all structures are convected
out of the system in the deterministic case~«50!, which
leads to a stable trivial state with no structure@cf. Fig. 2~a!#.
Noise-sustained traveling waves can, however, be observed
@cf. Fig. 2~b!#. In the stochastic case one of the traveling
waves reaches its saturation value in the bulk and suppresses
the other one. There exists a layer at the inlet with a width
depending on the distance to the instabilitym and the noise

FIG. 2. Space~horizontal axis!-time ~verti-
cal axis! plot of the moduli of the amplitudes
A(x,t) ~left! and B(x,t) ~right!, in arbitrary
units, in the region 1 of Fig. 1~g51.2,
m50.165,v51!. The upper diagrams show the
spatial dependence ofA andB at the end of the
space-time plots. In this region the trivial state
@A(x,t)5B(x,t)50# is convectively unstable.
~a! Deterministic case («50). The disturbances
of the initial random pattern are convected out
of the system.~b! Same as~a! but for the sto-
chastic case~«50.0001!. Due to the strong
cross-coupling~g.1!, only a traveling wave
structure can survive. The spatially distributed
noise effectively sustains the traveling wave
structure.
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level «. The noise-sustained structure is thus created due to
the convectively unstable amplification of the noise as al-
ready discussed in@5,15#.

In region 2 (mc,m or v,vc) the final states are traveling
waves for both cases~deterministic, stochastic!. Depending
on the initial conditions the system exhibits regions where
one of the two traveling waves survives@cf. Figs. 3~a!, 3~b!#.
Between the right and left traveling wave regions emerge
sharp fronts which are called sources and sinks. The motion
of these fronts has a very large time scale compared to the
emergence of the patterns and have not been studied in this
work.

B. Weak cross-coupling,g<1

When the cross-coupling~g,1! is small, the selected pat-
terns should correspond to standing waves. Coexistence of

the two traveling waves can be observed. The modulus of the
two amplitudes can reach the same value which is the con-
dition for standing waves.

If the group velocity is smaller than the critical value for
the absolute instability of the traveling wave state@~region 5!
v,vc8 or mc8,m# there is no qualitative difference between
the final states, which consist in a standing wave structure
@cf. Figs. 4~a!, 4~b!#.

In the region 4 where the traveling wave state is abso-
lutely stable and the velocity is smaller than the critical
velocity for stability of the trivial state (vc8,v,vc or
mc,m,mc8) one observes different spatiotemporal behavior
in the deterministic and the stochastic case@cf. Figs. 5~a!,
5~b!#. In absence of noise~«50!, the first transition, during
the time evolution, is from a random initial condition to a
standing wave structure. Due to front propagation this state

FIG. 3. Same as Fig. 2 in region 2 of Fig. 1
~g51.2,m50.8,v51!. In this region the trivial
state @A(x,t)5B(x,t)50# is absolutely un-
stable. The disturbances of the initial random
pattern create a traveling wave pattern. The lo-
cations of the sources and sinks~fronts between
right and left traveling waves! depend on the
initial condition as well as on the noise. There is
no qualitative difference between the determin-
istic case~a! ~«50! and the stochastic case~b!
~«50.0001!.
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is replaced by an exactly symmetric traveling wave structure
due to the symmetric boundary conditions@cf. Fig. 5~a!#. If
noise effects are included~«Þ0! a standing wave structure is
sustained@cf. Fig. 5~b!#. It is important to note that in this
case noise changes the nature of the observed spatial struc-
ture: In region 1, noise sustains a pattern where there is no
pattern with no noise@5,15#, but here noise transforms a
deterministic TW structure into a noise sustained SW struc-
ture.

When the group velocity overcomes the critical value for
stability of the trivial state@~region 3! m,mc or vc,v# a
complicated noise-sustained structure arises. This structure
has the main features of a standing wave structure sustained
by spatially distributed noise, with a bulk region which fluc-
tuates around the deterministic values for the standing wave
solution. From time to time one observes holes~peaks!

which are convected through the structure~cf. Fig. 6!. Note
that the results presented in Fig. 1 of the numerical study
performed by Deissler and Brand@13# also correspond to this
region of the parameter space where both uniform and trav-
eling wave states are convectively unstable but absolutely
stable. Different to us, these authors consider only localized
noise at the boundaries. Such a noise source is able to sustain
two traveling waves, each of which only fills the half of the
system which includes the boundary where it originates.
These TWs are convected out of the system when the noise
is suppressed. On the contrary, Fig. 2 of@13# presents a
situation where, according to our stability analysis, the uni-
form state is convectively unstable while the traveling wave
state is absolutely unstable (mc8,m,mc with mc8,mc since
g,0!. In this case, localized noise generates traveling waves
which, as the result of their absolute instability, should be

FIG. 4. Same as Fig. 2 in region 5 of Fig. 1
~g50.8,m51.385,v51!. The disturbances of the
initial random pattern create a standing wave pat-
tern. There is no qualitative difference between
the deterministic~a! ~«50! and the stochastic
case~b! ~«50.0001!.
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transformed into standing waves which persist after noise
removal, in complete agreement with the numerical results of
@13#.

IV. CHARACTERIZATION OF THE TRANSITION
FROM SW TO NOISE-SUSTAINED SW

The boundary between regions 4 and 5 of Fig. 1 identifies
a transition between convective and absolute instability of
the traveling wave state~cf. arrow in Fig. 1!. When noise
is taken into account this transition is transformed into
one between a deterministic SW structure and a noise-
sustained SW. In this section we give a quantitative statisti-
cal characterization of this new type of transition investi-
gating the behavior through the transition of different quan-
tities such as amplitudes, correlation time, and correlation
length. Our analysis has similarities with the analysis in@5#

of the transition between deterministic TW structures and
noise-sustained TW~boundary between regions 1 and 2 of
Fig. 1!.

A. Modulus of the amplitude

The time average value of the amplitudeA at a fixed
space point, calculated with no noise~«50!, exhibits the
deterministic transition between traveling and standing
waves at the critical valuemc8. In the region of stable stand-
ing waves (m.mc8), the amplitude has its stationary standing
wave valuê uA(x,t)u2&5m/(11g), which bifurcates to the
stationary value of the traveling wave^uA(x,t)u2&5m at the
critical valuem5mc8 ~cf. Fig. 7!. However, the same calcu-
lation taking noise into acount shows no trace of the transi-
tion: the amplitude has the same averaged value for a deter-
ministic or a noise-sustained standing wave. In order to

FIG. 5. Same as Fig. 2 in region 4 of Fig. 1
~g50.8,m50.408,v51!. ~a! Deterministic case
~«50!: the disturbances of the initial random
pattern create initially a standing wave pattern
which is replaced, due to front propagation, by
a symmetric traveling wave pattern.~b! Sto-
chastic case~«50.0001!: the spatially distrib-
uted noise gives rise, in the bulk of the system,
to a noise-sustained standing wave structure
fluctuating around the deterministic value.
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characterize the transition between deterministic and noise-
sustained standing waves we need to consider quantities giv-
ing some information on the degree of temporal or spatial
order, as we do next.

B. Correlation time

We can calculate a correlation time by considering the
width of the power spectrumA(x0 ,w) of a time series
A(x0 ,t) at a fixed locationx0 in the bulk. Since we deal with
spatially distributed noise and symmetric boundary condi-
tions, A(x0 ,w) is statistically independent ofx0. We then
consider an averaged correlation times t

21 defined in terms
of the spatially averaged second moment of the power spec-
trum:

v̄5K E dvuA~x0 ,v!u2v

E dvuA~x0 ,v!u2
L ,

s t
25K E dvuA~x0 ,v!u2~v2v̄ !2

E dvuA~x0 ,v!u2
L , ~4.1!

where ^•••& stands for the spatial average in the interval
0,x,L.

In Fig. 8 we plot the inverse correlation times t as a
function ofm. The vertical line marks the critical valuemc8

FIG. 6. Same as Fig. 2 in region 3 of Fig. 1
~g50.8,m50.165,v51!. ~a! In the determinis-
tic case the structure is convected out of the
system which goes back to the trivial solution.
~b! Stochastic case~«50.0001!: a complicated
spatiotemporal structure can be observed. The
bulk fluctuates around the deterministic value of
the standing wave pattern but from time to time
a hole~peak! is convected through the pattern.
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for the instability of the traveling wave solution. We see that
no change of behavior is observed in the deterministic case
~«50!: a narrow power spectrum exists either for determin-
istic traveling wavesm,mc8 or for deterministic standing
wavesm.mc8. However, when noise is taken into account a
rather sharp transition is observed between a narrow power
spectrum for deterministic standing waves and a wide power
spectrum associated with a noise-sustained standing wave.
The transition is identified by an apparent divergence of the
correlation times t

21 . Such divergence occurs for a value of
m which is shifted with respect to the one identified in a
deterministic analysis as the limit for convective instability
of traveling waves (m5mc8). Noise induced shifts of insta-
bility boundaries is a rather well known phenomena, and the
numerical and experimental results reported in@5# for a tran-
sition between regions 1 and 2 of Fig. 1 do not seem to be
inconsistent with the possibility of such shift.

C. Correlation length

As an alternative characterization we now consider a cor-
relation lengthsx

21 which gives a quantitative characteriza-
tion of the spatial fluctuations. It is defined in terms of the
width sx of the time averaged Fourier spectrumA(k,t) of
the amplitudeA(x,t):

sx
25K E dkuA~k,t !u2~k2 k̄!2

E dkuA~k,t !u2
L , ~4.2!

where^•••& stands now for the time average in a large time
window t0,t,t01T.

Figure 9 shows the correlation lengthsx
21 under variation

of the bifurcation parameterm. A transition is clearly identi-

FIG. 8. Width of the power
spectrum, in arbitrary units, as given
by Eq. ~4.1! as a function of the bi-
furcation parameter for the stochas-
tic ~x! and deterministic cases~o!.
Vertical line as in Fig. 7 and
g50.85.

FIG. 7. The time averaged value
of uAu/Am at a fixed spatial point
plotted as a function of the bifurca-
tion parameter for the stochastic~x!
and deterministic cases~o!. The ver-
tical scale is normalized to the value
of uAu for m50.2, and the cross-
coupling parameter isg50.85. The
vertical line denotes the critical con-
trol parametermc8 given by Eq.
~2.10!.
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fied at the same shifted instability point at which the corre-
lation time diverges. At this value ofm the correlation length
saturates here to the system size, while for smaller values of
m we obtain a smaller correlation length indicating absence
of long range order associated with a noise-sustained struc-
ture. On the other hand, the deterministic equation («50)
shows a transition exactly at the valuemc8 which is predicted
in the linear stability analysis~Sec. II!. For m.mc8 the cor-
relation length also saturates to the system size, while for
m,mc8 it goes to a value which is a factor 1/A2 smaller. This
factor is a matter of the definition used for the correlation
length of the amplitudeA. It can be easily understood by
noting that form.mc8 the wave with amplitudeA fills the
whole system in a standing wave state, while form,mc8 it
only fills half of the system in the traveling wave state@com-
pare Figs. 4~a! and 5~a!#.

V. CONCLUSION

In this paper, we have studied the effect of noise on
coupled complex Ginzburg-Landau equations on varying not
only control parameters such as the distance to thresholdm
or the group velocityv, but also the cross couplingg be-
tween individual counter-propagating traveling waves. In the
strong coupling regime~g.1!, we recover the results ob-
tained by other authors, namely, the development of noise-
sustained traveling waves. In the small coupling regime~g
,1!, we show that there is an intermediate region between
the trivial uniform state and the standing wave domain where
traveling waves are convectively unstable. Our determinisitic
numerical analysis confirms this result since one observes,
on increasing the bifurcation parameter~or decreasing the
group velocity!, transitions from the trivial state to traveling
waves, and finally to standing waves. In the presence of spa-
tially distributed noise our stochastic numerical analyis
shows that sustained standing waves are obtained in all the
domain beyond the Hopf bifurcation. Therefore, in the inter-
mediate region mentioned above, noise amplification by the
convective terms transforms a traveling wave structure into a

noise-sustained standing wave structure. Hence, we conclude
that noise is not only able to sustain spatiotemporal patterns,
but also to modify pattern selection processes in regimes of
convective instability. In addition, we have given a quantita-
tive statistical characterization of the transition between de-
terministic and noise-sustained standing waves. We have
shown that this transition occurs at a noise-shifted point with
respect to the one at which traveling waves become abso-
lutely unstable. The transition is identified by an apparent
divergence of a correlation time and the saturation of a cor-
relation length to a value given by the system size.
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APPENDIX: NUMERICAL METHOD

The discretized time integration of the CCGLE~2.1! was
performed with a second order Runge-Kutta algorithm~Heun
method in vector form! @24#

] tA~x,t !5F„A~x,t !…1A«j~x,t !. ~A1!

The Heun recursion relation prescribes

FIG. 9. Correlation length, in ar-
bitrary units, as given by Eq.~4.2!
as a function of the bifurcation pa-
rameter for the stochastic~x! and
deterministic cases~o!. Vertical line
as in Fig. 7 andg50.85.
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g1~x,t !5F„A~x,t !…,

g2~x,t !5FSA~x,t !1Dtg1~x,t !1A «Dt

~Dx!n
u~x,t ! D ,

A~x,t1Dt !5A~x,t !1
Dt

2
@g1~x,t !1g2~x,t !#

1A «Dt

~Dx!n
u~x,t !, ~A2!

where ui(x,t) are independent random variables with unit
variance and vanishing mean value, andn denotes the di-
mension of the spatial coordinates. The correlation of the
noise variables have the form

^ja
a ,jb

b&5«da,bda,bd~x2x8,t2t8!, ~A3!

with a,b5Re,Im anda,b5A,B.
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