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We investigate a pattern-forming system close to a Hopf bifurcation with broken translational symmetry. In
one-dimensional geometries, its evolution is governed by two coupled complex Ginzburg-Landau equations
which describe the amplitude of the counterpropagating traveling waves that develop beyond the instability.
The convective and absolute instabilities of the possible steady states are analyzed. In the regime of strong
cross coupling, where traveling waves are favored by the dynamics, the results of previous analysis are
recovered. In the weak cross-coupling regime, where standing waves are favored by the dynamics, traveling
waves nevertheless appear, in the absence of noise, between the uniform steady state and the standing-wave
patterns. In this regime, standing waves are sustained by spatially distributed external noise for all values of the
bifurcation parameter beyond the Hopf bifurcation. Hence, the noise is not only able to sustain spatiotemporal
patterns, but also to modify pattern selection processes in regimes of convective instability. In this weak
coupling regime we also give a quantitative statistical characterization of the transition between deterministic
and noise-sustained standing waves when varying the bifurcation parameter. We show that this transition
occurs at a noise-shifted point and it is identified by an apparent divergence of a correlation time and the
saturation of a correlation length to a value given by the system [$4€63-651X96)10412-§

PACS numbd(s): 47.20.Ky, 02.50.Ey, 05.48j, 43.50+y

I. INTRODUCTION rameter fieldo(x,t) can be represented by two slowly vary-
ing envelope function#\(x,t) andB(x,t) for left and right
A series of physicochemical systems driven out of equitraveling waves:
librium undergo Hopf bifurcations with broken translational _ _
symmetries, which lead to the development of traveling or a(x,H)=A(x,t)e' X e + B(x,t)e ! kex el (1.2)
standing wave patterns. This is, for example, the case in ) ) ]
Rayleigh-Bmard convection in binary or viscoelastic fluids Th€ evolution of the amplitudé and B is governed by
[1], for spiral vortex flow in the Taylor-Couette system with CCOLE [7,10-14. The nonlinear cross coupling between

counterrotating cylinderi&], or in electrohydrodynamic con- both amplitudes that determines if the stable patterns corre-
vection in liquid crystalg3]. Traveling rolls may also be spond to travelingstrong cross couplingor standing(weak

obtained by the application of a through flow on hyolrooly_cross couplinggwaves. The effect of the group velocity may

o . P usually not be discarded in the determination of the stability
hamic instabilities of the Rayleigh-Bard or Taylor-Couette domain of the wave patterns. One has to distinguish between
type[4-6]. As a result of the generic behavior of these sys

) L 4 . “convective and absloute instability, and it is now well known
tems in the vicinity of Hopf bifurcations, they may be de- y,5; g ficiently close to the Hopf bifurcation, the unpat-
scribed by coupled complex Ginzburg-Landau equationgerneq state is convectively unstable but absolutely stable
(CCGLQ- . . [5,13-17. In this regime, localized perturbations are con-
Effectively, it is now well known that, close to an insta- yected with the mean flow in such a way that they grow only
bility, the spatiotemporal behavior of a system far from ther-in a moving reference frame but decay at any fixed location.
mal equilibrium can be described by order-parameter-likeon increasing the bifurcation parameter, one reaches a well
equationg 7-9]. The mathematical structure of these equa-defined threshold determined by the group velocity, and
tions is rather universal and independent of the underlyingabove which the reference state becomes absolutely unstable.
physical system. The derivation of the order parameter equdn this regime, perturbations grow locally at fixed locations.
tion from the basic evolution equations is made possible byAs a result, the behavior of the system is qualitatively very
the space-time separation between unstable and stabdifferent in both regimes. In the convectively unstable re-
modes, and can be performed by different methods, such agme, a deterministic system cannot develop the expected
adiabatic elimination of the stable, or “slaved” modgd, @ wave patterns, except in special geometries, while in a sto-
or multiple scale analysig®], for example. chastic system, noise is spatially amplified and gives rise to
In one-dimensional systems which undergo a Hopf bifur-noise-sustained structurgks]. On the contrary, in the abso-
cation with broken spatial inversion symmetry, the order pajutely unstable regime, waves are intrinsically sustained by
the deterministic dynamics.
Convectively unstable systems have been widely studied,
*URL: http:/fformentor.uib.es/Nonlinear/ both numerically and experimentally, but mostly in the case

1063-651X/96/546)/634412)/$10.00 54 6344 © 1996 The American Physical Society



54 NOISE-SUSTAINED STRUCTURES IN COUPILE. . . 6345

of single traveling waves. This situation is modeled by awith spatial variations in one direction:
single CGLE which emerges in the strong cross-coupling

regime. In this case DglssIEIS] obtalngd numerically NOISe 5 A(x,t)— v, A(Xt)

sustained structures in the convectively unstable regime.

Babcocket al. [5] and Tsamarett al. [6] analyzed in detall =uAX, 1)+ (1+i a)af(A(x,t)
the corresponding experimental situation in the case of a i ) i )
Taylor-Couette system with through flow. Both groups ob-  — (1 FIB)ACGD[*A(X, 1) = (y+i8)[B(x,D[*A(x.)

served the transition from convective to absolute instability
and were able to generate noise-sustained structures. They
also showed that structures sustained by dynamics or by
noise have different statistical properties. This is, in particud;B(X,t) +v dyB(x,t)
lar, reflected by the behavior of their power spectrum which i 5
is essentially noise-free in the absolutely unstable regime and — #B(X.D)+(1+ia)dB(x,1)
presents broadening in the convectively unstable regime. —(1+18)|B(x,)[2B(x,) = (y+i 8)|A(X,1)|2B(x,1)
This broadening results from the phase wandering induced
by noise amplification. The onset of spectral broadening cor-  + \/EgB(x,t), (2.0
responds to the absolute instability boundary, which may be
slightly shifted, according to the noise intensity. As shown
by Babcocket al.[5] the experimental results fit nicely with
the numerical analysis of the corresponding amplitude equ
tion which is of the complex Ginzburg-Landau type.

The problem of interacting noise-sustained counterprop
gating waves was first studied by Deissler and Brit@l.

+\ealx,1);

whereA(x,t) andB(x,t) are the complex amplitudes of the
right and left traveling waves. The control paramegiemea-
%ures the distance to the onset of the instabilityis the
agroup velocity. The coefficientsy, B, y, and § can be
determined from the basic equations of the underlying physi-

: o , " . cal system. A Gaussian, delta correlated, complex white
However, the lack of a detailed stability analysis of indi- noise of strength level denoted by & (x,t), j—A,B is as-

vidual traveling waves did not allow a complete analysis of : : : i
the problem. In particular, the distinction these authors makgsrumed to be present in the system. This noise can be spa

o . . jally distributed or localizedfor example, at the inlet of a
er positive and negative cross couplmgs betvveen_ _Ieft an aylor-Couette system with through flopmWe will consider
right 'Fravellng waves does not determine the stability of 8in this paper a spatially distributed noise with vanishing cor-
traveling wave solution. Nevertheless, they presented qualrelation length(white noise in space and time
tatively new results consisting in the possibility of obtaining Next we analyze, from a deterministic point of view
transitions from convective to absolute instability and vice £=0) the linear stab’ility of homogeneous solutions of Eqs
versa for a given set of parameters. Such transitions can eas; 1) '
ily be interpreted in the framework of the stability analysis of * "
the uniform and traveling waves states.

It is the aim of this paper to study the effect of spatially A. Stability of the uniform reference state

distributed noise on convectively unstable systems, either for Linearizing the equation€.1) around the trivial solution

weak and strong cross couplings between counterpropagq&-(xit) = B(x,t) = 0, the complex dispersion relatian for
ing waves, in the presence of group velocity. In Sec. Il we, " yisturbance of wave numbe¢, that thus behaves as
introduce the CCGLE and study the linear stability of theewt+Kx becomes:

uniform reference state and homogeneous traveling wave. '

We find five different regions with different stability proper- w=p+Ko+(1l+ia)K?, K=k+iq, (2.2)
ties in our parameter space. In particular we find that for

weak cross coupling there is an intermediate regime betweez&\nd the growth rate of such a perturbation is given by

the uniform steady state and the standing wave patter ew(K). Using the method of steepest descent, the long-

where traveling waves are conveg:uvely unst_ab_le. In Sec. . ime behavior of the system along a ray defined by fixed
we present our stochastic numerical analysis in the five re-, ~. "7, d . A .
: . : o ; x/t, i.e. in a frame moving with a velocity,=x/t, is gov-
gions previously identified. We show that, in the weak cross- . . )
. : . . . erned by the saddle point defined by:
coupling regime, noise sustained standing waves appear for
all values of the bifurcation parameter beyond the Hopf bi-
furcation. Finally, Sec. IV reports a statistical characteriza- R d_w _ Im d_w 2.3
tion of the transition between deterministic and noise- dk| v dK /- :
sustained standing waves in terms of the behavior of an
average amplitude, correlation time, and correlation length

. ; ) . Since absolute instability occurs when perturbations grow at
An appendix contains details of our numerical procedures.

fixed locations, one has to consider the growth rate of modes
evolving with zero group velocity, which are defined by:

. COUPLED COMPLEX GINZBURG-LANDAU
EQUATIONS. STABILITY ANALYSIS do _ dw _
OF HOMOGENEOUS STATES Rel g/ =Ml gk | =© 2.4
We consider the CCGLE which describe the dynamics of
the amplitudes of two counterpropagating traveling wavesThese conditions define the following wave number:
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g=—ak, regime(y>1) from the weak cross-coupling reginfe<1).
Note that the pointy=0 does not play any particular role in
v the stability of traveling waves.
k=— 20+ ad) (2.9 In the presence of a nonvanishing group velocity, travel-

ing waves remain stable fop>1, while for y<1, they are

!

The real part ofw, which determines the growth raleof  convectively unstable fop<pu., where u¢ is determined

these modes is then: similarly to the preceeding case. Effectively, the conditions
v? Re<dw8) | de) 0 (2.10
= Y R — — | =Im| — = )

Therefore, the uniform reference state is absolutely undefine the same wave number
stable ifA>0. As already shown if15], this condition de-

termines a critical line in the parameter space which can be q=—ak,
expressed for the group velocityor the control parameter v
as =—
2
v
ve=2Vu(l+a?® or IR 2.7 However, the real part abg, which determines the growth

(1+a%) rate of the corresponding modes, is now:
Hence, for O< u< u ¢, the uniform reference state is convec- 02
tively unstable, and wave patterns are convected away in the Ag=Re&wg)=u(l—17y)— TRy (2.12

o

absence of noise. FQr> u., wave patterns may grow and
are sustained by the dynamics, even in the absence of noiaﬁd
[15].
v2

B. Stability of the uniform traveling wave me= 41—y (1t ad) He (2.13

!

The CGLE(2.1) admits two families of solutions corre- . . . .
sponding to traveling wavesA=\u— Klexp[kx—(Bu The corresponding critical group velocity i,
+ad)t], B(x,1)=0, and B=Ju—KZexg[kx—(Bu+akd)t], ~Vevl—vor
A(x,t)=0. For the sake of simplicity, we first consider uni- 02
form solutions k=0). Without loss of generality, one may Vo=l ———.
study the first family, and, in order to analyze its linear sta- 4u(l+a’)
bility, one has to look for solutions in the form
A=(\/u+a)exp—iBut, B(xt)=b, and compute the eigen-

values of the linearized evolution equations frb, and  ¢h, 14 pe expected between the trivial uniform state and

their complex conjugate. The real parts of the eigenvalues tanding waves, as shown on the phase diagram displayed in
the Fourier transform odi are well known(see, for example, Fig. 1.

[7] and[18]) and read:

(2.19

As a result, on increasing the bifurcation parameter in deter-
ministic systems at fixed and with y<<1, traveling waves

The above deterministic linear stability analysis divides,

9, _(1_ 2, ... for v fixed, the u-y parameter space in five regions of dif-
Rewje| 2u—(1=aB)a+-, ferent spatiotemporal behavior which we label as foll@afs
2 2 Fig. 2):
B , a’(1+pB% ,
Rew,=—(1+apB)q 2 qg*+---. (2.9 1 p<p. O
y>1,
The first one, associated with amplitude, is always nega- 20 pe<p TW
tive, but the second one, associated with phase, may become
positive and the system may experience a Benjamin-Feir in- 31 p<tc o
stability when X af is negative[19,20. In the following, e
we will consider systems wheke and 8 are small and posi- 4. pe< :“<1Ty ™w -1
tive, such that + «8>0. Y=
The only remaining instability mechanism may then result 5 Me - SW
from the growth ofB. Effectively, the linearized evolution T l-y K
equations foib give the following growth rate: (2.19
wg=p(l—y)—Ko+(1+ia)K? (2.9 In the strong cross-coupling reginig>1) we distinguish

two regions. In region 1 the uniform reference sté® is
Hence, in the absence of group velocity, single travelingconvectively unstable and it becomes absolute unstable in
waves are always stable fot>1, while they are unstable for region 2 where a traveling wa&W) is absolutely stable. In
v<1 leading to standing wave solutions with|=|B|#0. the weak cross-coupling reginig<1) we find three regions.
The conditiony=1 thus separates the strong cross-couplingn region 3 the uniform reference sta®) is convectively
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,Y | T T T T T T T T T T T | T T T [ T T T I T T T T | T T T |
[ o:no structure -
| x: travelling waves o: travelling waves i
L 1 2 x: travelling waves i
1.00
- : FIG. 1. Stability diagram for ho-
F 4 o: standing wave -> travelling waves 1 mogeneous solutions of Eq$21)
r x: standing waves y The numbers 1-5 denote regions of
075 | — ] different spatiotemporal behavior, as
i 1 discussed in the text. o stands for the
7 0o strueture 1 deterministic casés=0), x stands for
I x: standing waves . i
| < > | the stochastic cas@#0). Parameter
050 | _ | values arex=0.02, 8=0.04, 6=0.05,
L V2 | andv=1.
Yo T )
N u( o: standing waves b
L 5 x: standing waves ~
025 | |
1 1 1 | 1 1 1 | 1 1 1 1 | 1 L 1 1 L 1 1 1 1 | 1 1 1 1 | 1 1 1 1
2.00 3.00 4.00 5.00 6.00 7.00 z10™!

unstable, while in region 4 the traveling wave is the convecdn addition we will fix the noise level t&=0.0001 and we
tively unstable solution. This latter solution becomes absoassign fixed values to the other parameter&df): «=0.02,
lutely unstable in region 5 where the standing wd®&V)  3=0.04, ands=0.05. These values belong to the domain of
solution is absolutely stable, since we are considering valugsarameters in which the CGLE does not show phase insta-
of @, B, andé sufficiently small to satisfy the standing waves pijlities of the homogenous solutions leading to chaotic be-
phase stability condition + a(B8— y6)/(1— y?) [10,21]. havior.

These results can easily be generalized to traveling waves Npoise is expected to be amplified by the convective
solutions with nonzero wave numbers#0). In this case, terms leading to noise-sustained structures in regions
a perturbat|02ns decéay if the Benjamin-Feir-Eckhaus criterionyhere the reference state is deterministically convectively
1+ aB—(2k/u—k?)>0 is satlzsﬂeo;, whileb 2pe-rturba.tllons unstable. Therefore, we anticipate that noise effects will
grow locally whenu(1—y)+ yk®—v*/4(1+a’) is positive.  yoq 1t in TW states in the strong coupling regirfregions

We finally note that the absolute instability criteria de- y 4 5 o Fig. 1 being noise sustained in region 1. Like-
rivgd in t'his section are a direct consequence of the criterioo\lise we anticipate finding SW states in regions 3, 4, and 5
derived in Sec. Il A and Re{.15], where the linear growth of Fig. 1 corresponding to weak cross coupling. This implies

rate of the O statey, is replaced by its effective linear : . : :
growth rateu— y|A|2. This replacement was noted i3] that nplseStrangforrq_TNQ ts’[tatg ltnto ano lse—sutstf':l mgdssvw'
and it can be interprete@epending on the sign of) as a Irr;gri?)?wlczln and a state Into a noise-sustaine n

stabilizing or destabilizing effect of the waveon the wave - .
B. However, as shown above, the sign-ptioes not deter- In order to check these predictions the stochastic CCGLE

mine stability boundaries of the traveling wave solution(2-1) have been solved numerically with a Heun metitad
A= Ju—K2expi[kx—(Bu+akd)t], B(x,t)=0. Appgndn@, random |n|t|§1l conditions arouqd_ tha=B=0
solution, and the following boundary conditions: at the up-
stream end of each amplitude we use a rigid boundary con-
I1l. NOISE-SUSTAINED STRUCTURES dition

In this section we analyze numerically the effect of spa-
tially distributed noise on the homogeneous solutions of the
CCGLE (2.2). We will explore the parameter space by vary-
ing the cross-coupling parametgrand the reduced distance
to thresholdu while keeping the group velocity set to 1.
We note that this is equivalent to the variation pfand v
with u fixed, thanks to the scaling

A(L,t)=0, B(0}t)=0. (3.2

It turned out to be unimportant for the downstream part of
the system whether the inlet is fixed or is fluctuating with the
noise level5]. We also checked boundary conditions with a
Yon s Yo r . subcritical part(u<0) in front of the inlet k<0, x>L).
A=u A", B=u"B', T=p 1, This influenced only a very small portion of the system near

x=0 andx=L. Different boundary conditions on the out-

stream end have also a very small influence on the bulk of
(3.1) the systen{5,22]. We furthermore used a vanishing deriva-
tive at the outstream end of each amplitude:

!

X=pu Yx—p'=

-
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2.00F_ i
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1.00+_
1.00 .
0.50F_
| Il | | |
x10 % 210 2
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FIG. 2. Spacedhorizontal axig-time (verti-
cal axig plot of the moduli of the amplitudes
A(x,t) (left) and B(x,t) (right), in arbitrary
units, in the region 1 of Fig. 1(y=1.2,
n=0.165,v=1). The upper diagrams show the
spatial dependence #f andB at the end of the
(a) 100 200 3.00 4.00 102 1.00 2.00 3.00 4.00 =z102  Space-time plots. In this region the trivial state
[A(x,t)=B(x,t)=0] is convectively unstable.
(a) Deterministic caseg=0). The disturbances

2.60 2.60

z10~7 T T T T z10 ™7 T T T N
of the initial random pattern are convected out
4.00 . 4.001 ] of the system(b) Same aga) but for the sto-
3.00 2.00 chastic case(¢=0.000). Due to the strong
T E U 3 cross-coupling(y>1), only a traveling wave
2.000 B 2.005 ] structure can survive. The spatially distributed
noise effectively sustains the traveling wave
1.00f 1 1.00[ ] structure.
I | | |
%10 2
7.50|
5.00
2.50
(b) 100 2.00 3.00 4.00 =107 1.00 2.00 3.00 4.00 =i0?
d,A0t)=0, 4,B(L,t)=0. (3.3 A. Strong cross-coupling,y>1

Due to the fact that the real part of the cross coupling

parameter(y>1) between the two fields is larger than the
These boundary conditions mimic extended systems with ngeal part of the self coupling (tigB), traveling waves
reflection of the individual traveling waves at the ends of theshould be the selected pattern in this domain. Due to the
system. As such, they rule out the possibility of standingsymmetry betweem\ and B, a competition between these
waves maintained by end effects, as it occurs for example itwo traveling waves may be observed.
binary fluid convection, even in the absence of n¢&&. In In region 1, where the group velocity is larger than the
this case, even in the convectively unstable regime, countectritical one w<u. or v.<v) all structures are convected
propagating waves, emitted at the boundaries are not entiretyut of the system in the deterministic cage=0), which
convected out of the system since they are partially reflectefbads to a stable trivial state with no struct{icé Fig. 2a)].
at each opposite boundary and may thus build an effectivéloise-sustained traveling waves can, however, be observed
but artificial standing wave pattern in the bulk. With the [cf. Fig. 2b)]. In the stochastic case one of the traveling
boundary condition used here this effect is absent and nwaves reaches its saturation value in the bulk and suppresses
boundary effect should thus interfere with the stochastic efthe other one. There exists a layer at the inlet with a width
fects that we analyze. depending on the distance to the instabilityand the noise
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z10”7 T T T T z10~! T T T
4.00 4.00(_
3.00 3.00[_
2.00 2.00[_
1.00 1.00[_
| | I
x10 2 210 2

7.50 7.50

5.00 5.00

FIG. 3. Same as Fig. 2 in region 2 of Fig. 1
(y=1.2, x=0.8,v=1). In this region the trivial
state [A(x,t)=B(x,t)=0] is absolutely un-
stable. The disturbances of the initial random

2.50 2.50

a 1.00 2.00 3.00 4.00 2 . . . . 2 ;
@ =10 1.00 200 3.00 4.00 =10 pattern create a traveling wave pattern. The lo-
. » cations of the sources and sinffeonts between
z10 ' ' ’ ' =10 ' ' ' ' right and left traveling wavesdepend on the
4.000 3 4.00f_ B initial condition as well as on the noise. There is
no qualitative difference between the determin-
3.00[_ 3 3.001_ . istic case(a) (¢=0) and the stochastic cagb)
(£=0.00012.
2.00[_ 1 2.001_ 3
1.00}_ 1 1.001 3
| 1 1 I 1 | 1
%10 2 %10 #

7.50|
5.00 5.00

250 2.50

(b) 1.00 2.00 3.00 4.00 z10? 1.00 2.00 3.00 4.00 z10?

level . The noise-sustained structure is thus created due tihe two traveling waves can be observed. The modulus of the
the convectively unstable amplification of the noise as altwo amplitudes can reach the same value which is the con-
ready discussed ifb,15]. dition for standing waves.

Inregion 2 (u.<u orv<uw,) the final states are traveling If the group velocity is smaller than the critical value for
waves for both case@leterministic, stochasticDepending  the absolute instability of the traveling wave stgtegion 9
on the initial conditions the system exhibits regions Wherev<vé or u.<u] there is no qualitative difference between

one of the two traveling waves survivie. Figs. 3a), 3(b)].  he final states, which consist in a standing wave structure
Between the right and left traveling wave regions emerg cf. Figs. 4a), 4(b)].

sharp fronts which are called sources and sinks. The motion | | the region 4 where the traveling wave state is abso-
of these fronts has a very large time scale compar_ed to thI_%ltely stable and the velocity is smaller than the critical
emergence of the patterns and have not been studied in ﬂ\'félocity for stability of the trivial state (! <v<uv. or

work. nc<um<pue) one observes different spatiotemporal behavior
. in the deterministic and the stochastic cqst Figs. 5a),
B. Weak cross-coupling,y<1 5(b)]. In absence of noisé=0), the first transition, during
When the cross-couplingy<<1) is small, the selected pat- the time evolution, is from a random initial condition to a
terns should correspond to standing waves. Coexistence sfanding wave structure. Due to front propagation this state



6350 M. NEUFELD, D. WALGRAEF, AND M. San MIGUEL 54

z10~1 T T T T T z10~7 T T T T T
4.oof\ ] 4.00[_ f
3.00[_ ] 3.00[_ ]
2.00[_ ] 2.00[_ .
1.00[_ ] 1.00[_ .

1 | 1 1 | I | | | |
z10 # x10 #

3.50 3.50

3.00 3.00
2.60 2.50
2.00

1.50

2.00
1.50

1.00 1.00
0.50 0.50
FIG. 4. Same as Fig. 2 in region 5 of Fig. 1
(a) 0.25 0.50 0.75 1.00 1.25 z10°% 0.25 0.50 0.75 1.00 1.25 =103 (y=0.8,u=1.385,0=1). The disturbances of the
initial random pattern create a standing wave pat-
w101 , | | , , w101 : : : : : tern. There is no qualitative difference between

the deterministic(a) (e=0) and the stochastic

4.00 4.00 case(b) (¢=0.0002.

3.00_ 3.00
2.000_ 2.00

1.00(_ 1.00

x10 3

7.50

5.00

2.50

(b) 0.25 0.50 0.75 1.00 1.25 z10 93 0.25 0.50 0.75 1.00 1.25 103

is replaced by an exactly symmetric traveling wave structuravhich are convected through the structgcé Fig. 6). Note
due to the symmetric boundary conditios. Fig. 5a@)]. If  that the results presented in Fig. 1 of the numerical study
noise effects are includgd+0) a standing wave structure is performed by Deissler and Braf#i3] also correspond to this
sustainedcf. Fig. 5b)]. It is important to note that in this region of the parameter space where both uniform and trav-
case noise changes the nature of the observed spatial strigling wave states are convectively unstable but absolutely
ture: In region 1, noise sustains a pattern where there is nstable. Different to us, these authors consider only localized
pattern with no noisd¢5,15], but here noise transforms a noise at the boundaries. Such a noise source is able to sustain
deterministic TW structure into a noise sustained SW structwo traveling waves, each of which only fills the half of the
ture. system which includes the boundary where it originates.
When the group velocity overcomes the critical value forThese TWs are convected out of the system when the noise
stability of the trivial statd(region 3 u<pu. or ve<v] a is suppressed. On the contrary, Fig. 2[aB] presents a
complicated noise-sustained structure arises. This structusituation where, according to our stability analysis, the uni-
has the main features of a standing wave structure sustainéadrm state is convectively unstable while the traveling wave
by spatially distributed noise, with a bulk region which fluc- state is absolutely unstable.f<u<pu with u.<u. since
tuates around the deterministic values for the standing wave<0). In this case, localized noise generates traveling waves
solution. From time to time one observes holgeak$  which, as the result of their absolute instability, should be
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210”1 T T T T z10~! T T T T
4.00 ] 4.00[_
3.001_ ] 3.00_
2.00[_ ] 2.00[_
1.00 h 1.000_
| | 1 L
x10 2 z10 2

7.50

5.00

2:50 FIG. 5. Same as Fig. 2 in region 4 of Fig. 1

(y=0.8,4=0.408,v =1). (a) Deterministic case

(e=0): the disturbances of the initial random
(a) 1.00 2.00 3.00 4.00 =107 1.00 2.00 3.00 4.00 =z102  pattern create initially a standing wave pattern
which is replaced, due to front propagation, by

I : | : : 210" : : : : a symmetric traveling wave patterb) Sto-
chastic cas€s=0.0002: the spatially distrib-
4.001 . 4.00- . uted noise gives rise, in the bulk of the system,
to a noise-sustained standing wave structure
3.00(_ h 3.001- . . S
fluctuating around the deterministic value.
2.00f_ ] 2.00}_ 3
1.00f 3 1.00 ]
1 | I 1 I | Il Il
%10 2 z10 2

7500
5.00( 5.00 . ]

2.60 2.60

>

(b) 1.00 2.00 3.00 4.00 z10? 1.00 2.00 3.00 4.00 z107?

transformed into standing waves which persist after noisef the transition between deterministic TW structures and
removal, in complete agreement with the numerical results ofioise-sustained TWboundary between regions 1 and 2 of
[13]. Fig. 1).

IV. CHARACTERIZATION OF THE TRANSITION A. Modulus of the amplitude

FROM SW TO NOISE-SUSTAINED SW The time average value of the amplitudeat a fixed

The boundary between regions 4 and 5 of Fig. 1 identifie$Pace point, calculated with no noige=0), exhibits the
a transition between convective and absolute instability ofleterministic transition between traveling and standing
the traveling wave statécf. arrow in Fig. 2. When noise Wwaves at the critical valug. In the region of stable stand-
is taken into account this transition is transformed intoing waves fu> u.), the amplitude has its stationary standing
one between a deterministic SW structure and a noisewave value(|A(x,t)|2)=u/(1+ y), which bifurcates to the
sustained SW. In this section we give a quantitative statististationary value of the traveling wayeA(x,t)|?)=u at the
cal characterization of this new type of transition investi-critical value u= . (cf. Fig. 7. However, the same calcu-
gating the behavior through the transition of different quan-ation taking noise into acount shows no trace of the transi-
tities such as amplitudes, correlation time, and correlationion: the amplitude has the same averaged value for a deter-
length. Our analysis has similarities with the analysi$Sh  ministic or a noise-sustained standing wave. In order to
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z10~71

4.00
3.00
2.00

1.00

z10 2

7.50

5.00

2.650

(a)

1.00 2.00 3.00 4.00

z10 2

x10~

4.00

3.00[

2.00[_

1.00

.7:102'

750

5.00

2.50

(b)

characterize the transition between deterministic and noise-
sustained standing waves we need to consider quantities giv-
ing some information on the degree of temporal or spatial

1.00 2.00 3.00 4.00

order, as we do next.

We can calculate a correlation time by considering the
width of the power spectrunA(xy,w) of a time series
A(Xgp,t) at a fixed locatiorxg in the bulk. Since we deal with
spatially distributed noise and symmetric boundary condi-
tions, A(xq,w) is statistically independent of,. We then
consider an averaged correlation timg! defined in terms

B. Correlation time

z10 2

z107

4.00
3.00
2.00

1.00

z10 2

1.00 2.00 3.00 4.00

FIG. 6. Same as Fig. 2 in region 3 of Fig. 1
(y=0.8, u=0.165,0v=1). () In the determinis-
tic case the structure is convected out of the
system which goes back to the trivial solution.
(b) Stochastic casés=0.0002: a complicated

z10~

4.00

3.00[_

2.000

1.00

spatiotemporal structure can be observed. The
bulk fluctuates around the deterministic value of
the standing wave pattern but from time to time
a hole(peak is convected through the pattern.

z10 ?

7.50

5.00

2.60

1.00 2.00 3.00 4.00

z10 2
jdw|A(Xo,w)|2a)
[ awlaco.ol [
fdw|A(xo,w)|2(w—652
o= : 4.0

fdwlA(xo,ml2

where (---) stands for the spatial average in the interval

of the spatially averaged second moment of the power spec- In Fig. 8 we plot the inverse correlation time, as a

trum:

function of . The vertical line marks the critical valye,
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1‘10'1%@0 |O T T T T T T T T T T I T T T T
|Al i o) ]
e i O ,
NP B
L o _
i ) FIG. 7. The time averaged value
L 1 of |Al/\Ju at a fixed spatial point
4.00 | — - plotted as a function of the bifurca-
i ) tion parameter for the stochastic)
L 9 4 and deterministic casés). The ver-
- 1 tical scale is normalized to the value
875 — I of |A| for u=0.2, and the cross-
i i coupling parameter i3=0.85. The
L g vertical line denotes the critical con-
2501 ] trol parameter u. given by Eg.
. 1 (o.
VIV S N A VI VN
1.00 2.00 3.00 4.00
Jo2
for the instability of the traveling wave solution. We see that C. Correlation length

no change of behavior is observed in the deterministic case As an alternative characterization we now consider a cor-

(e=0): a narrow power spectrum exists either for determin-g|ation lengtho; * which gives a quantitative characteriza-
Istic travelln,g wavesu<p or for deterministic standing i, of the spatial fluctuations. It is defined in terms of the
wavesu > . Hovv_e_ver,_ when noise is taken into account awidth o, of the time averaged Fourier spectrukk,t) of
rather sharp transition is observed between a narrow powghe amplitudeA(x,t):

spectrum for deterministic standing waves and a wide power

spectrum associated with a noise-sustained standing wave.

The transition is identified by an apparent divergence of the

correlation timeo; *. Such divergence occurs for a value of oy
 which is shifted with respect to the one identified in a fdklA(k,t)l2

deterministic analysis as the limit for convective instability

of traveling waves &= u.). Noise induced shifts of insta-

bility boundaries is a rather well known phenomena, and th&vhere(:--) stands now for the time average in a large time
numerical and experimental results reporte@&hfor a tran- ~ window to<t<ty+T.

sition between regions 1 and 2 of Fig. 1 do not seem to be Figure 9 shows the correlation lengity * under variation

[ a0k

, 4.2

inconsistent with the possibility of such shift. of the bifurcation parameter. A transition is clearly identi-
1_70_ 1 T T T T T T T T T T T T 3
6. | ]
L« i
L x ]
150 | |

r ] FIG. 8. Width of the power
spectrum, in arbitrary units, as given
by Eq. (4.1 as a function of the bi-

1.00 X — furcation parameter for the stochas-
- X 1 tic (x) and deterministic case®).
r ) Vertical line as in Fig. 7 and
i =0.85.
L > B Y
050 % -
i X i
L % _
- X -
bond o o oondoo ola S % XX [ X | 0, .
1.00 2.00 3.00 4.00
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*10 [N T T T T i T I T T T T I T T T T T 7
» | 0000 2 % X X 2 X o X
c, 5 1
- >< |
7.001 B
L X d
L X J
X |
- XY i
6.50 s X — - .
i i FIG. 9. Correlation length, in ar-
L J bitrary units, as given by Eq4.2)
- 1 as a function of the bifurcation pa-
6.00 | __ o _ -
i ] rameter for the stochastitx) and
L o 4 deterministic case®). Vertical line
i i as in Fig. 7 andy=0.85.
5501 O —
i o ]
5.00 *Q@?O ! l | ]
1.00 2.00 3.00 4.00
L

fied at the same shifted instability point at which the corre-noise-sustained standing wave structure. Hence, we conclude
lation time diverges. At this value gf the correlation length that noise is not only able to sustain spatiotemporal patterns,
saturates here to the system size, while for smaller values ¢fut also to modify pattern selection processes in regimes of
w we obtain a smaller correlation length indicating absenceonvective instability. In addition, we have given a quantita-
of long range order associated with a noise-sustained strugve statistical characterization of the transition between de-
ture. On the other hand, the deterministic equatie®Q)  terministic and noise-sustained standing waves. We have
shows a transition exactly at the valpg which is predicted  shown that this transition occurs at a noise-shifted point with
in the linear stability analysi¢Sec. 1). For u> u. the cor-  respect to the one at which traveling waves become abso-
relation length also saturates to the system size, while folutely unstable. The transition is identified by an apparent
w< ¢ it goes to a value which is a factor\iz smaller. This  divergence of a correlation time and the saturation of a cor-
factor is a matter of the definition used for the correlationrelation length to a value given by the system size.

length of the amplitudéA. It can be easily understood by

noting that foru>u. the wave with amplitude fills the

whole system in a standing wave state, while for u . it ACKNOWLEDGMENTS
only fills half of the system in the traveling wave stjtem-
pare Figs. 48 and 5a)]. M.N. was supported by a grant from the Direccion Gen-
eral de Investigacion Cientifica y Tecni@GICYT, Spain.
V. CONCLUSION D.W. also benefited from the support of the DGICYT,

, . , through a grant for a sabbatical stay. We acknowledge finan-
In this paper, we have studied the effect of noise On.ja| sypport from the DGICYT grant PB94-1167. We would
coupled complex Ginzburg-Landau equations on varying Nobq, ie to thank Rauroral for making available a library to
only control paramgters such as the distance to .thresdnold create Gaussian distributed random numbers on our com-
or the group velocity, but also the cross .couplmg be- uter cluster as well as for his discussions and help during
tween individual counter-propagating traveling waves. In th he creation and testing of the numerical integrator. We also

strong coupling regiméy>1), we recover the results Ob.' acknowledge helpful discussions with H. Brand.
tained by other authors, namely, the development of noise-

sustained traveling waves. In the small coupling regime
<1), we show that there is an intermediate region between
the trivial uniform state and the standing wave domain where
traveling waves are convectively unstable. Our determinisitic ) _ o )
numerical analysis confirms this result since one observes, The discretized time integration of the CCGIE1) was
on increasing the bifurcation paramet@r decreasing the Performed with a second order Runge-Kutta algoritffeun
group velocity, transitions from the trivial state to traveling Method in vector form[24]

waves, and finally to standing waves. In the presence of spa-

tially distributed noise our stochastic numerical analyis

shows that sustained standing waves are obtained in all the FHAX, D) =F(A(X,1)+ Ve &x,1). (A1)
domain beyond the Hopf bifurcation. Therefore, in the inter-

mediate region mentioned above, noise amplification by the

convective terms transforms a traveling wave structure into &he Heun recursion relation prescribes

APPENDIX: NUMERICAL METHOD



g1(X,t) =F(A(x,1)),

Oo(X,t)= F( A(X,t)+Atgy(x,t)+ \/ (Zix;”u(x’t)) ,

A(X,t+At) =A(x,t)+ %[gl(x,t) +0,(x,1)]

[ eAt
+ WU(X,t),

(A2)

NOISE-SUSTAINED STRUCTURES IN COUPILE. . .

6355

where u;(x,t) are independent random variables with unit
variance and vanishing mean value, amdlenotes the di-
mension of the spatial coordinates. The correlation of the
noise variables have the form

(85,6))= 88, 50apd(X—X ,t=1"), (A3)

with a,b=Re,Im and«,8=A,B.
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